JOUW ENERGIE MOMENT

Structure

- ▶ Introduction
- Challenges and developments
- The quest for flexibility in the energy system
- Jouw Energie Moment Pilots Breda & Zwolle
- Indesit's smart washing machine

Enexis

- Distribution network company
 (former business unit of energy company Essent/RWe)
- ► Fully; i.e. ownership unbundled DSO (1-7-2006 national law on independent networks)
- ▶ Shareholders provinces and municipalities
- ▶ 4100 employees*

revenue: 1204 million euros

▶ profit: 194 million euros

▶ total assets: 5911 million euros

▶ Independent network operator

Gas

- 1.892,000 clients
- 41.000 km mains and service lines
- 24.000 gas stations
- < 1 min yearly failure duration

Electricity

- 2.596,000 clients
- 130.000 km MV and LV cables
- 51.000 transformer stations
- 25 min. loss of loads (SAIDI)

Developments

Network operator is responsible for delivery of right amount of energy at the right time at the right place

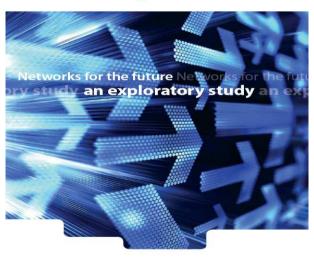
- Energy savings
- Increase in (sustainable) distributed energy production
- Electricification of energy usage

Consequences Energy Transition Network

► Existing Infrastructure designed to facilitate one-directional energy flows

Consequences Energy Transition Network

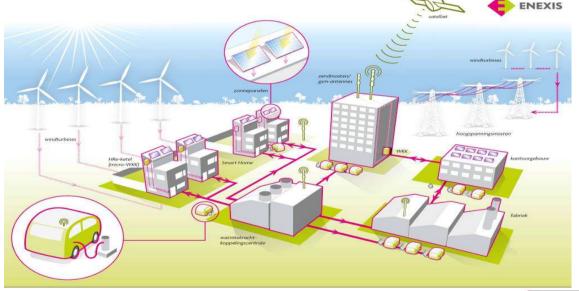
Incorporating bi-directional flows (distributed production) and increasing flexibility (intermittent sources) necessary



Developments

- ▶ Flexibility and integration of distributed production
- ▶ Two directions for solutions:
 - Classical grid reinforcements

	Scenario A	Scenario B	Scenario C
Feeding in offshore wind power	9-15	3-5	3-5
Feeding in onshore wind power	2	1	0
Increasing capacity of HV network	11 - 12	6 - 12	12
and HV/LV transformers			
Increasing capacity of MV network			
and MV/LV transformers	5-19	5-8	5-14
Increasing capacity of LV cables	0 - 15	0-5	0-8
Increasing capacity of LV connector cables	0-3	0-1	0-1
Increasing capacity of gas transmission network	ca. 4	ca. 4	ca. 4
Construction raw gas infrastructure,			
green gas intake	ca. 1	ca. 1	ca. 1
Investments in experimental projects	p.m.	p.m.	p.m.
Investments in heat infrastructure,			
CO ₂ infrastructure, and storage	p.m.	p.m.	p.m.
Total	32 -71	20 - 37	25 - 45



February 2011

Developments

- ▶ Flexibility and integration of distributed production
- ▶ Two directions for solutions:
 - ▶ 'Smart'

▶ "In their 2004 Memorandum of Understanding, the GridWise Alliance and the U.S. Department of Energy agreed to work together to realize the vision of a transformed national electricity grid." (Grid Wise Alliance)

"SmartGrids will help achieve sustainable development." (Technology Platform for the Electricity Networks of the Future)

"Smart Grids are a key enabler for the implementation of government energy and environmental policies." (KEMA)

▶ "It's the Dutch government's ambition to hold a frontrunner position in smart grid technology and applications." (Energierapport 2008)

▶ "We will see the current passive network, where in times of emergencies blunt interventions are needed, changing into an active network in which autonomous software agents will take decisions to optimise system stability and network quality." (prof.ir. W.L. Kling, TU/e)

Smart Grids: Why haven't they arrived yet?

- ► (Decentral) storage of energy (stationary and / or in electric vehicles) is (still) too costly
- ► Law and regulation ("copper plate" paradigm; unbounded facilitation of market through network)
- Costs, reliability and lifetime expectancy of needed ICT
- Split incentives; costs and benefits are not evenly distributed amongst stakeholders

Smart Grids: Why haven't they arrived yet?

- costs about actual "form" of smart grids

 Indistinctness about ""

 Indi
- ณves; costs and benefits are not evenly distributed ongst stakeholders

Enexis

- Enexis will make the best effort in order to earn the trust of our clients, employees, shareholders and society to play a leading role in facilitating a sustainable energy supply system.
- Department of Innovation initiates pilots on the field of "smart grids" to increase insights in the workings of the technologies, effects and functions of the concept.
- Focus is on "increasing flexibility of the energy system"

The Quest for flexibility in the energy supply system

- Adding flexibility by directing non-time critical demand
 - ▶ E.g. directed charging of electric cars, heat pumps switches

The Quest for flexibility in the energy supply system

- Technical solutions
 - Remote switching, routing flows of energy, local storage of decentralised production of electricity

The Quest for flexibility in the energy supply system

Involving the consumer in issue of flexibility

Demand Side Management

Smart Grid pilot Breda

60 "energy neutral" households
Between Oosterhoutseweg and Cadettenkamp

Heat pump Solar panels

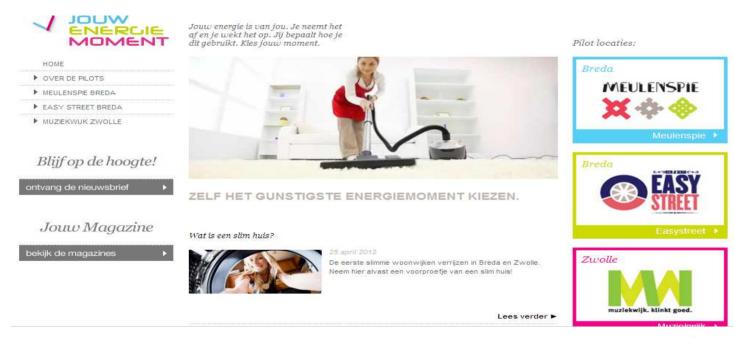
250 "CO2 neutral" households Ettensebaan

Combined Heat and Power Collective Solar panel system

Smart Grid pilot Zwolle

Muziekwijk

- ▶ 266 houses
- Solar panels


Method

Aim of project smart grid with consumer:

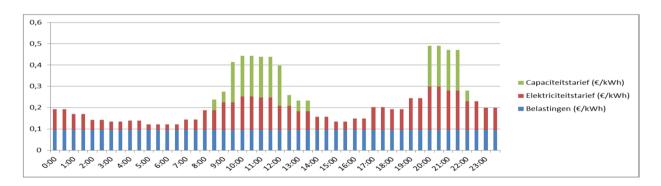
- ▶ Realising flexible use of electricity by consumer
- Necessary:
 - Communication
 - Interaction
 - ▶ Financial and emotional stimuli
 - Technology

www.jouwenergiemoment.nl

Newsletters

Magazine (on-line) & social media (twitter, facebook, youtube)

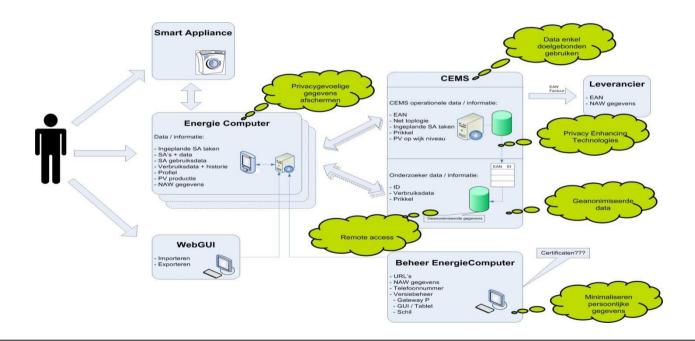
"town hall" meetings


Stimuli / Incentives

User can shift the use of apliance during agreed timeframe: most optimal moment to use is determined by operator of demand side management

Optimal time slots are communicated to user 24hrs in advance

User makes choices based on:


- Costs preferences
- Efficient use of locally produced electricity

Technologies

▶ ICT – developed by Technolution, Flexicontrol, IBM and Logica

Technologies

▶ ICT – developed by Technolution, Flexicontrol, IBM and Logica

Indesit Company in the Jouw Energie Moment

We met Enexis at

- We immediately realized that our Smart Washing Machine fit the field trial use cases and we left it to Joris!
- In 3 months, we integrated it to the system!
- How?
 - Sharing specs and documentation
 - Using a lot of Skype
 - Working hard, with passion and motivation
- Why?
 - We loved since the first moment the idea of the project
 - We would like to offer to our customer new services to be greener and to save money.

Indesit 1.0 Energy Saving Approach

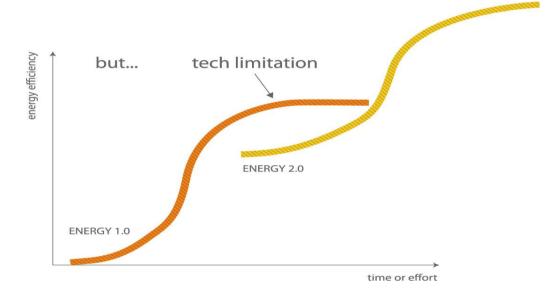
MDAs are responsible for 43% of residential consumption

TRADITIONAL TECHNOLOGIES FOR ENERGY

Reducing the quantity of water

Designing low energy cycles

Using higher efficiency actuators and motors

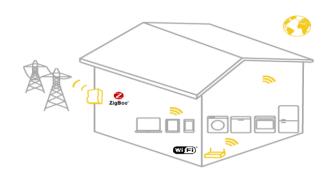


Bettering the thermodynamics

From Energy 1.0 to Energy 2.0

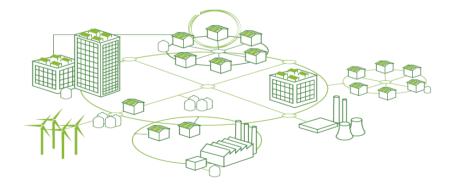
We reached outstanding results but....

LIFECYCLE OF INNOVATION CURVE



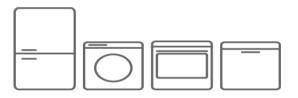
Indesit Energy 2.0: Smart Appliances in the Smart Grid

SMART HOUSE


The Smart Appliance, endowed with additional intelligence and communication capability, becomes an energy actor in the Home Area Network ecosystem

SMART GRID.

Smart Houses are connected to the new Smart Grid



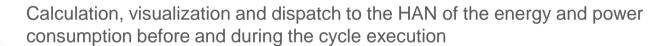
The active role of Indesit Smart appliances

AWARENESS

Energy Cost CO₂ footprint

COORDINATED ENERGY MANAGEMENT

Active planning and coordination


DEMAND SIDE MANAGEMENT

Flexibility in the energy usage to contribute to the grid balancing

Smart washing machine

Smart Aqualtis is the first Indesit WM designed to be integrated in "Smart" ecosystems, covering a wide range of use cases.

Forecast and visualization of the estimated cost for the selected cycle based on time based tariff

Visualization of the total power consumption of the house

Coordination with the others connected appliances and to microgeneration to optimize the power consumption in the house

Scheduling of the starting time to ensure the cheapest or the greenest cycle, always respecting the users constraints

the Smart Aqualtis speaks E@h

Protocol extensions for Smart Appliances:

Power Profile

sequence of **Power phases**, the basic "uninterruptable" elements

The cycles are NO MORE MONOLITHIC

Status

Current Cycle and Phase Time To End Start and Finish Time

Statistics

To export a whole set of behavioral data

Control

Start, Stop, Pause Remote scheduling

Events & Alerts

Cycle related events Faults

E@h achievements

- Technical specifications of the Home Area Network protocol currently under standardization within the Zigbee Alliance
- An interoperable fully-integrated system comprising smart gateway, smart meter, smart plugs and smart domestic appliances
- Interoperability test events (including some ZigBee events hosted by Energy@home)
- An Italian field trial involving 50 users
- The "Jouw Energie Moment" field trial
- Foundation of the Energy@home Association

Energy@home Association

 On 4th Jul 2012 the Partners founded a not-for-profit Association open to all interested partners.

- The Association will be the way to:
 - ► Continue the activities with a larger number of Partners; Edison has already joined it.
 - ► Enlarge range of industries
 - ▶ Influence regulation, consumer & manufacturer associations, and standards

Indesit Company in the Jouw Energie Moment project

What we learned?

Public protocols, open specifications and a lively ecosystem of many different industries are the key success factors for interoperability

Next challenges:

Analyze the huge amount of data flowing from the premises!

And crossing the fingers for the customers reaction.....

Indesit Company in the Jouw Energie Moment

Thank you!

